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Supplementary Material

6 Relation Between the Proposed VP Objective and the
InfoGAN Objective

6.1 Introduction of InfoGAN

InfoGAN [10] decomposes the latent representation in GAN into two separate
parts: z = [znoise, zcode], where znoise denotes the incompressible noise and
zcode denotes latent code capturing salient semantic features. In order to force
the latent code zcode to learn salient semantics, InfoGAN add a regularization
term into the objective of GAN:

min
G

max
D

Vin(G,D) = V (G,D)− λI(x; zcode), (8)

where x = G(zcode, znoise). In this objective, the generator network G is not
only guided to synthesize real images with GAN loss V (G,D), but forced to
maximize the mutual information between the generated image and the latent
codes zcode. This modification has been shown effective for learning disentangled
representations.

6.2 Variation Predictability in InfoGAN

As shown in Eq. 8, the InfoGAN maximizes the mutual information between
the generated images x and the latent codes z (we omit the code subscript
for concision). In this section, we show that maximizing this term implicitly
maximizes a variant of the variation predictability objective.

Proposition 1. For random variables y, z1, z2, (dim(z1) = dim(z2)), and
∆z = z1 − z2, we have:

I(y; z1, z2) = I(y;∆z, z1). (9)

Proof. For the spaces (Z1,Z2) and (∆Z,Z1), there is a one-to-one mapping
between them: (

∆z
z1

)
=

(
I −I
I 0

)(
z1

z2

)
, (10)

where I is the identity matrix and 0 is the zero matrix. Note that the trans-
formation matrix is a full-rank matrix so the mapping between the two space is
one-to-one. Therefore a probability density function p(Z1,Z2)(z1, z2) defined in
space (Z1,Z2), can also be described in the space (∆Z,Z1), which we denote
as p(∆Z,Z1)(∆z, z1), with equivalence holds at each point:

p(Z1,Z2)(z1, z2) = p(∆Z,Z1)(∆z, z1). (11)
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Similarly, for spaces (Y ,Z1,Z2) and (Y , ∆Z,Z1), we also have:

p(Y ,Z1,Z2)(y, z1, z2) = p(Y ,∆Z,Z1)(y, ∆z, z1), (12)

because there is a full-rank transformation matrix between these two spaces: y
∆z
z1

 =

I 0 0
0 I −I
0 I 0

 y
z1

z2

 . (13)

Now we can expand the mutual information terms in Eq. 9 to show their equiv-
alence.

I(y; z1, z2) =

∫
y

∫
z1

∫
z2

p(y, z1, z2)log
p(y, z1, z2)

p(y)p(z1, z2)
dydz1dz2 (14)

=

∫
y

∫
∆z

∫
z1

p(Y ,∆Z,Z1)(y, ∆z, z1) (15)

· log
p(y,∆z,z1)(y, ∆z, z1)

p(y)p(∆Z,Z1)(∆z, z1)
dyd∆zdz1 (16)

= I(y;∆z, z1), (17)

where the subscripts for p(Z1,Z2)(z1, z2) and p(Y ,Z1,Z2)(y, z1, z2) are omitted
for concision. �

Proposition 2. For variables x1 = G(z1) and x2 = G(z2), where z1 and z2

are independent variables from an identical prior distribution p(z), and ∆z =
z1 − z2, we have:

I(x1; z1) + I(x2; z2) = I(x1,x2;∆z) +H(z1|∆z)−H(z1|∆z,x1,x2). (18)

Proof.

I(x1;z1) + I(x2; z2) (19)

= I(x1,x2; z1, z2) (20)

= I(x1,x2;∆z, z1) (21)

= H(∆z, z1)−H(∆z, z1|x1,x2) (22)

= H(∆z) +H(z1|∆z)−H(∆z|x1,x2)−H(z1|∆z,x1,x2) (23)

= I(x1,x2;∆z) +H(z1|∆z)−H(z1|∆z,x1,x2) (24)

Eq. 20 is because z1 ⊥⊥ z2 and x1 ⊥⊥ x2. Eq. 21 is based on proposition 1. Eq.
23 uses the chain rule in entropy. �

Since z1 and z2 are independent variables from the same distribution, max-
imizing the left-hand-side of Eq. 18 is equivalent to maximizing the I(x; z) in
InfoGAN objective (Eq. 8). We can see based on proposition 2, optimizing the
InfoGAN objective implicitly maximizes the subterm I(x1,x2;∆z), which is
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very similar to our proposed VP objective I(x1,x2; d). The difference between
these two terms is that I(x1,x2;∆z) tries to maximize the mutual information
between all the variations in latent variables and the paired images while ours
tries to emphasize on the learning of a single dimension of variation, which is an
easier objective than InfoGAN and more focused on disentanglement. This may
be the reason why our models can learn better disentangled representations and
maintain a stabler training.

7 Proof of Lemma 1

Lemma 1. For the mutual information between two random variables I(x;y),
the following lower bound holds:

I(x;y) ≥ H(y) + Ep(x,y)log q(y|x), (25)

where the bound is tight when q(y|x) = p(y|x).

Proof.

I(x;y) = H(y)−H(y|x) (26)

= H(y) + Ep(x,y)log p(y|x) (27)

= H(y) + Ep(x)Ep(y|x)log
p(y|x)q(y|x)

q(y|x)
(28)

= H(y) + Ep(x)Ep(y|x)log q(y|x) + Ep(x)Ep(y|x)log
p(y|x)

q(y|x)
(29)

= H(y) + Ep(x,y)log q(y|x) + Ep(x)DKL(p(y|x)||q(y|x)) (30)

≥ H(y) + Ep(x,y)log q(y|x), (31)

where Eq. 31 is because of the non-negativity of KL divergence. �

8 VP Metric: Training Set Ratio Study

We conducts experiments to show how the parameter η in our proposed VP
metric influences the evaluation results in Table 6 and 7. We can see when the
training ratio is large, it is hard to distinguish the entangled and the disentangled
models based on the VP metric, and that is why we choose to keep the ratio low
in our experiments.

9 More Quantitative Comparisons on Disentanglement

We directly compare our VPGAN with baselines of CascadeVAE and InfoGAN
using FactorVAE metric and our VP metric in Table 8 and 9. For VPGAN, we
train an inference network to map images to the latent space. Scores are averaged
by 3 random runs except for CascadeVAE. We can see CascadeVAE still achieves
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η 0.01 0.5 0.9

β-VAE 42.2 89.4 97.1
CascadeVAE 62.4 95.8 98.5

Table 6. Ratio study on Dsprites.

η 0.01 0.5 0.9

β-VAE 39.7 87.5 98.2
CascadeVAE 70.6 97.1 99.4

Table 7. Ratio study on 3DShapes.

Model FactorVAE Score VP Score

CascadeVAE 91.3 (7.4) 59.2 (4.6)
InfoGAN-0.1 62.7 (5.2) 24.3 (6.9)
VPGAN-0.1 69.5 (4.7) 38.8 (5.1)

Table 8. Comparison on Dsprites.

Model FactorVAE Score VP Score

CascadeVAE 94.7 (2.1) 62.3 (4.9)
InfoGAN-0.1 60.4 (5.1) 31.7 (7.9)
VPGAN-0.1 74.1 (3.2) 57.2 (6.5)

Table 9. Comparison on 3DShapes.

the best performance, and our VPGAN can outperform the InfoGAN baseline
by an obvious margin. Note that GAN-based models are sensitive to network
architectures, which are not carefully tuned in our experiments, thus the results
between the VAE- and GAN-based models may not be directly comparable.

10 Network Architectures

The encoders, decoders, and recognizors for Dsprites and 3DShapes are shown
in Table 10, Table 11, and Table 12. The βhigh = 20, βlow = 2 and α = 100 for
Dsprites dataset, while βhigh = 40, βlow = 3, and α = 10 for 3DShapes dataset.
The generators for flat and hierarchical VPGANs on CelebA 128×128 dataset are
in Table 13, Table 14, Note that for CelebA we used conv-layers and modulated-
conv-layers from stylegan2 code base https://github.com/NVlabs/stylegan2 as
building blocks for implementation. The discriminators for all CelebA models are
default discriminators in stylegan2 (with residual net connections) but with 128×
128 input size. The recognizors are the same as discriminators but with output
layer modified to output dimensions same as the number of input latent codes.
The InfoGAN baselines are using the same generator and discriminator as the
VPGAN-hierarchical, and there is another branch at the end of its discriminator
to output logits to form the InfoGAN regularization term in InfoGAN objective.
The generators for VPGANs on 3DChairs are in Table 15. All models are trained
with Adam optimizer with learning rate of 0.002.

11 Traversal of InfoGAN

See Fig. 7 to Fig. 14.
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Encoder-64

64× 64× nchannel

4× 4 Conv. 32, ReLU, Stride 2

4× 4 Conv. 32, ReLU, Stride 2

4× 4 Conv. 64, ReLU, Stride 2

4× 4 Conv. 64, ReLU, Stride 2

FC. 256

FC. 2× nconti

Table 10. Encoder architecture on
Dsprites and 3DShapes datasets.

Decoder-64

latent code ∈ Rnconti

FC. 128, ReLU

FC. 4× 4× 64, ReLU

4× 4 Deconv. 64, ReLU, Stride 2

4× 4 Deconv. 32, ReLU, Stride 2

4× 4 Deconv. 32, ReLU, Stride 2

4× 4 Deconv. nchannel, ReLU, Stride 2

Table 11. Decoder architecture on
Dsprites and 3DShapes datasets.

Encoder-64

64× 64× nchannel

4× 4 Conv. 32, ReLU, Stride 2

4× 4 Conv. 32, ReLU, Stride 2

4× 4 Conv. 64, ReLU, Stride 2

4× 4 Conv. 64, ReLU, Stride 2

FC. 256

FC. nconti

Table 12. Recognizor architecture on
Dsprites and 3DShapes datasets.

12 Traversal of VPGAN-flat

See Fig. 15 to Fig. 22. The traversal animation can be found in the file
VPGAN flat animations.gif.

13 Traversal of VPGAN-hierarchical

See Fig. 23 to Fig. 31. The traversal animation can be found in the file
VPGAN hier animations.gif.
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Generator-flat-CelebA128

4× 4× 128 Learnable Constant

3× 3 Deconv. ReLU

3× 3 ModuConv. ReLU, Latents 30

3× 3 Conv. Relu

3× 3 Conv. Relu

3× 3 Conv.+Noise Relu

3× 3 Conv.+Noise Relu

3× 3 Deconv. ReLU

3× 3 Conv. Relu

3× 3 Conv.+Noise Relu

3× 3 Conv.+Noise Relu

3× 3 Deconv. ReLU

3× 3 Conv. Relu

3× 3 Conv. Relu

3× 3 Conv.+Noise Relu

3× 3 Conv.+Noise Relu

3× 3 Conv. Relu

3× 3 Conv.+Noise Relu

3× 3 Conv.+Noise Relu

3× 3 Deconv. ReLU

3× 3 Conv. Relu

3× 3 Conv.+Noise Relu

3× 3 Conv.+Noise Relu

3× 3 Conv. Relu

3× 3 Conv. Relu

3× 3 Deconv. ReLU

3× 3 Conv. Relu

128× 128× nchannel

Table 13. Generator of VPGAN-flat on
CelebA dataset.

Generator-hierarchical-CelebA128

4× 4× 128 Learnable Constant

3× 3 Deconv. ReLU

3× 3 ModuConv. ReLU, Latents 10

3× 3 Conv. Relu

3× 3 Conv. Relu

3× 3 Conv.+Noise Relu

3× 3 Conv.+Noise Relu

3× 3 Deconv. ReLU

3× 3 ModuConv. ReLU, Latents 10

3× 3 Conv. Relu

3× 3 Conv.+Noise Relu

3× 3 Conv.+Noise Relu

3× 3 Deconv. ReLU

3× 3 ModuConv. ReLU, Latents 5

3× 3 Conv. Relu

3× 3 Conv. Relu

3× 3 Conv.+Noise Relu

3× 3 Conv.+Noise Relu

3× 3 Conv. Relu

3× 3 Conv.+Noise Relu

3× 3 Conv.+Noise Relu

3× 3 Deconv. ReLU

3× 3 ModuConv. ReLU, Latents 5

3× 3 Conv. Relu

3× 3 Conv.+Noise Relu

3× 3 Conv.+Noise Relu

3× 3 Conv. Relu

3× 3 Conv. Relu

3× 3 Deconv. ReLU

3× 3 Conv. Relu

128× 128× nchannel

Table 14. Generator of VPGAN-
hierarchical on CelebA dataset.
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Generator-3DChairs

4× 4× 128 Learnable Constant

3× 3 Deconv. ReLU

3× 3 ModuConv. ReLU, Latents 5

3× 3 Deconv. ReLU

3× 3 ModuConv. ReLU, Latents 5

3× 3 Deconv. ReLU

3× 3 ModuConv. ReLU, Latents 3

3× 3 Deconv. ReLU

3× 3 Conv. Relu

Table 15. Generator for 3DChairs.

Azimuth

Fig. 7. Azimuth of InfoGAN.
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Brightness

Fig. 8. Brightness of InfoGAN.

Fringe

Fig. 9. Fringe of InfoGAN.
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Gender

Fig. 10. Gender of InfoGAN.

Hair color

Fig. 11. Hair Color of InfoGAN.
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Lighting

Fig. 12. Lighting of InfoGAN.

Saturation

Fig. 13. Saturation of InfoGAN.
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Smile/Elevation

Fig. 14. Smile of InfoGAN.

Azimuth

Fig. 15. Azimuth of VPGAN-flat.
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Brightness

Fig. 16. Brightness of VPGAN-flat.

Fringe

Fig. 17. Fringe of VPGAN-flat.



30 X. Zhu et al.

Gender

Fig. 18. Gender of VPGAN-flat.

Hair color

Fig. 19. Hair Color of VPGAN-flat.
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Makeup

Fig. 20. Makeup of VPGAN-flat.

Saturation

Fig. 21. Saturation of VPGAN-flat.
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Smile

Fig. 22. Smile of VPGAN-flat.

Azimuth

Fig. 23. Azimuth of VPGAN-hierarchical.
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Brightness

Fig. 24. Brightness of VPGAN-hierarchical.

Elevation

Fig. 25. Elevation of VPGAN-hierarchical.
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Fringe

Fig. 26. Fringe of VPGAN-hierarchical.

Gender

Fig. 27. Gender of VPGAN-hierarchical.
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Hair color

Fig. 28. Hair Color of VPGAN-hierarchical.

Lighting

Fig. 29. Lighting of VPGAN-hierarchical.



36 X. Zhu et al.

Saturation

Fig. 30. Saturation of VPGAN-hierarchical.

Smile

Fig. 31. Smile of VPGAN-hierarchical.


