Portfolio item number 1
Short description of portfolio item number 1
Short description of portfolio item number 1
Short description of portfolio item number 2
In this paper, we introduce a variant of the traditional CNN model named the Branch Convolutional Neural Network (B-CNN). A B-CNN model outputs multiple predictions ordered from coarse to fine along the concatenated convolutional layers corresponding to the hierarchical structure of the target classes, which can be regarded as a form of prior knowledge on the output.
We consider two less-emphasized temporal properties of video: 1. Temporal cues are fine-grained; 2. Temporal modeling needs reasoning. To tackle both problems at once, we exploit approximated bilinear modules (ABMs) for temporal modeling.
This paper defines the variation predictability of latent disentangled representations. Given image pairs generated by latent codes varying in a single dimension, this varied dimension could be closely correlated with these image pairs if the representation is well disentangled.
Unlike the independence assumption, interpretability has rarely been exploited to encourage disentanglement in the unsupervised setting. In this paper, we examine the interpretability of disentangled representations by investigating two questions: where to be interpreted and what to be interpreted?
We view disentanglement learning as discovering an underlying structure that equivariantly reflects the factorized variations shown in data. We propose to encode the data variations with groups, a structure not only can equivariantly represent variations, but can also be adaptively optimized to preserve the properties of data variations.
Published:
This is a description of your talk, which is a markdown files that can be all markdown-ified like any other post. Yay markdown!
Published:
This is a description of your conference proceedings talk, note the different field in type. You can put anything in this field.
Undergraduate course, University 1, Department, 2014
This is a description of a teaching experience. You can use markdown like any other post.
Workshop, University 1, Department, 2015
This is a description of a teaching experience. You can use markdown like any other post.